

Implications of informality for monetary and fiscal policy effectiveness in Colombia

SGPMIE-GT Banco de la República

> CBBH-BCC Conference Informal Economy: Measurement and Effects Sarajevo, 31 October 2024

1

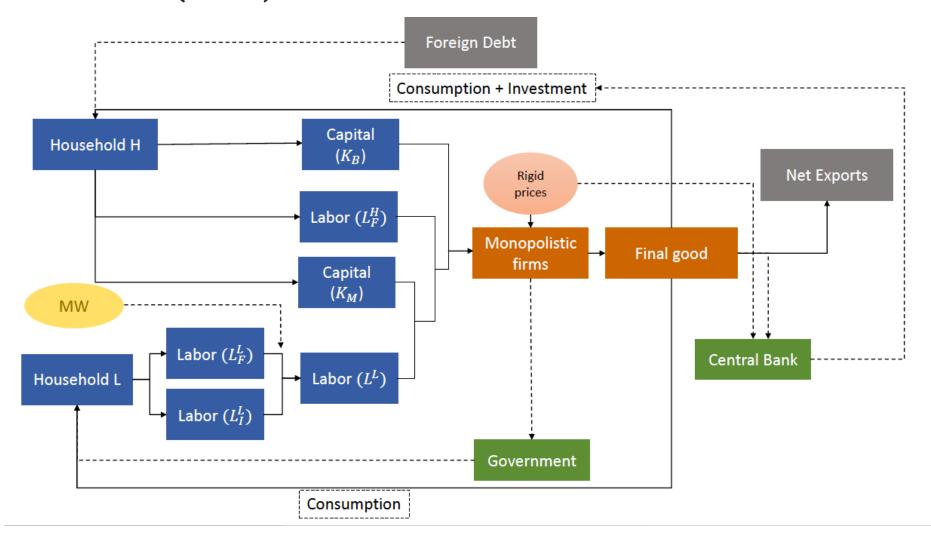
Effects of the informal economy on monetary policy effectiveness

Oscar Ávila, Anderson Grajales, Juan José Ospina and Mario Ramos

The model

Households: High-skilled (H) and Low-skilled (L)

- H: access to domestic and foreign financial markets, offer high-skilled labor, own firms and capital (buildings & equipment).
- L: hand-to-mouth, offer formal and informal low-skilled labor.


Firms: Two layers

- Heterogeneous firms act in monopolistic competition, use three types of labor and two types of capital to produce a differentiated good (static problem). Face price rigidities (dynamic problem).
- Final producer aggregates heterogeneous inputs into a homogeneous good that is allocated into consumption, investment, and net exports.

Institutions:

- Central Bank: Taylor rule that responds to inflation expectations and the output gap.
- Government: Taxes formal labor and subsidizes low-skilled households (balanced budget).
- Minimum wage to formal low skilled workers: rule of adjustment that depends on labor productivity + shock.

The model (cont.)

Calibration and estimation

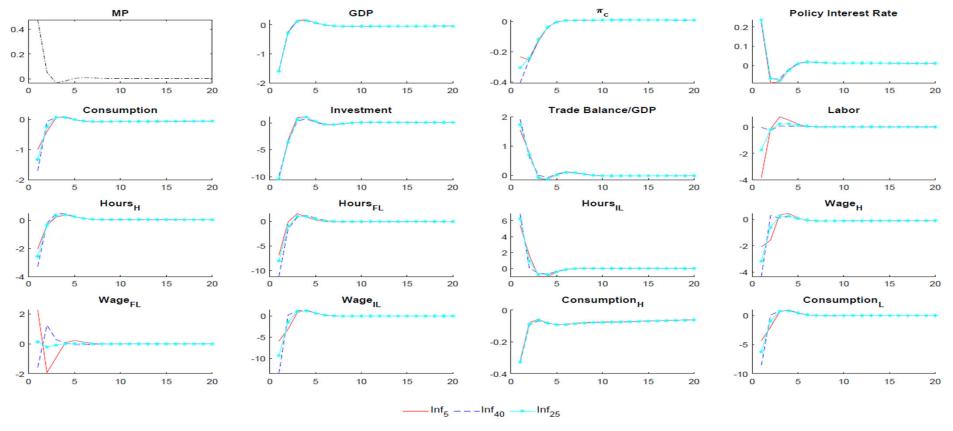
- Data from National Accounts, Household Surveys, and PWT.
- Calibration strategy considers parameters from the literature, target matching, data and normalization.
- Estimation through Simulated Method of Moments to match business cycle moments.

The literature

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameter	Definition	Value	Source
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	σ	Intertemporal elast. Subs	2.0	Glover (2019)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	в	Discount factor	0.99	González et al. (2011)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VH	High-skilled Labor elasticity	1.0	Glover (2019)
$ η_L $ Elast. subs. L_I vs L_F 1.50 Krusell et al. (2000) $ φ$ Price rigidity 0.75 González et al. (201 $ ξ$ Elast. subs. intermediates 12 González et al. (201 $ r_π$ Taylor $ π$ 1.50 González et al. (201 $ r_γ$ Taylor $ γ$ 0.25 González et al. (201	$oldsymbol{\psi}_{H}$	Disutility of high-skilled labor	1.0	Glover (2019)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	η	Elast. subs. L m vs L H	0.7	Krusell et al. (2000)
ξ Elast. subs. intermediates 12 González et al. (201 r_{π} Taylor π 1.50 González et al. (201 r_{y} Taylor y 0.25 González et al. (201	η_{L}	Elast. subs. L _I vs L _F	1.50	Krusell et al. (2000)
r_{π} Taylor π 1.50 González et al. (201 r_{y} Taylor y 0.25 González et al. (201	ϕ	Price rigidity	0.75	González et al. (2011)
r _y Taylor y 0.25 González et al. (201	ξ	Elast. subs. intermediates	12	González et al. (2011)
,	r_{π}	Taylor π	1.50	González et al. (2011)
	r_y	Taylor y	0.25	González et al. (2011)
δ_m Depreciation of K_m 0.01 Krusell et al. (2000)	δ_m	Depreciation of K m	0.01	Krusell et al. (2000)
δ_b Depreciation of K_b 0.03 Krusell et al. (2000)	δ_b	Depreciation of K _b	0.03	Krusell et al. (2000)

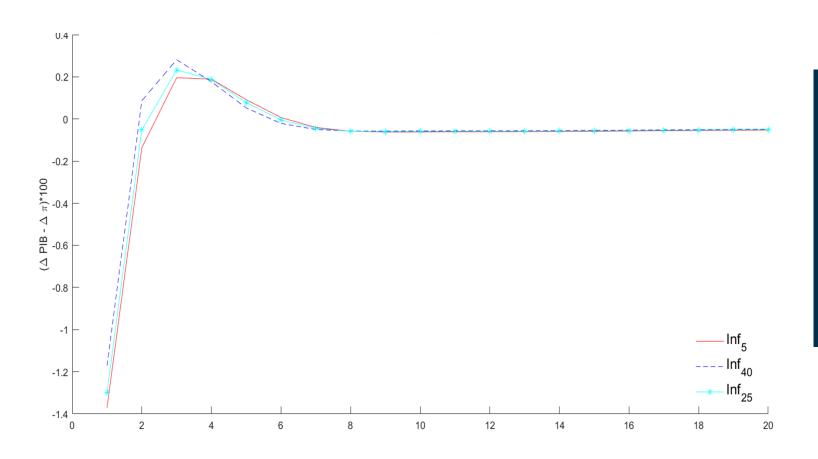
Data and normalization

Parameter	Definition	Value	Source
π	Long run inflation	1.0	Normalization
πfss	LR foreign inflation	1.0	Normalization
Afss	Net foreign assets LR	-0.50	Data
Фss	LR risk premium	1.0037	Data
τςς	Labor taxes	1.2	Data


Target matching

Parameter	Definition	Value	Source
$v_{FL} = v_{IL}$	Low-skilled labor elasticity	2.0	Calibrated
$\psi_I = \psi_F$	Disutility of low-skilled labor	3.12	Calibrated
η_m	Elast. subs. L L vs K m	1.25	Calibrated
α	Capital share	0.31	Calibrated
${\boldsymbol{\vartheta}}$	Productivity L m vs L H	0.34	Calibrated
${\cal O}_L$	Productivity L F L vs L I L	0.51	Calibrated
ϑ_m	Productivity L_L vs K_m	0.42	Calibrated
w_{min}	LR real minimum wage	0.38	Calibrated
A	Productivity	0.83	Calibrated
$\phi_{\scriptscriptstyle b}$	Capital adjustment cost kb	0.004	Estimated
ϕ_m	Capital adjustment cost km	0.0065	Estimated
ϕ_{a}	Risk premium elast, to debt	0.90	Estimated

Estimated parameters (SMM)


Shock	Persistence	Volatility
Total Factor Productivity (TFP)	0.92	0.0025
Demand	0.85	0.0015
Monetary Policy	0.75	0.0038
Laborcosts	0.2	0.065

Impulse response function to a monetary policy shock

- With low informality, the economy has an additional rigidity associated with the minimum wage.
- An increase in the policy rate affects inflation the most in the economy with highest informality.

The sacrifice ratio is lower with higher informality

When informality is low, reducing inflation via the policy interest rate is more difficult as a larger share of the marginal cost is directly affected by the minimum wage rigidity.

Long-term effects of informality on fiscal policy

Catalina Granda and Jesús E. Morales

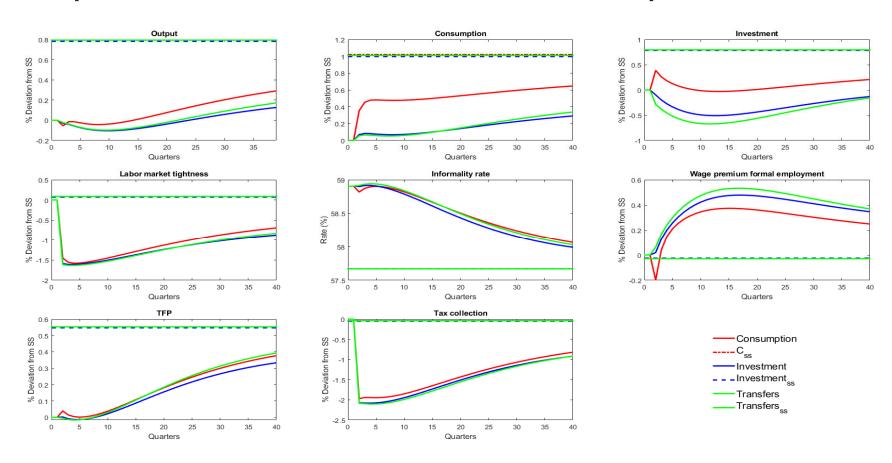
A SOE-RBC-SAM model with government

- A dynamic stochastic general equilibrium model of a small open economy with a labor market characterizing developing economies (unemployment + informality + inactivity), based on Leyva & Urrutia (2020, 2023).
- Preferences as in Leyva & Urrutia (2023, Appendix A) with external habits.
- The government balances a budget constraint that equals revenues and expenditures.
 - Revenue sources: tax collection (taxes on consumption, payroll, and capital and labor income) and oil revenue.
 - Expenditures: consumption, investment, and transfers
 - Productive investment expenditure → Public capital as an externality.
 - o Fiscal policy follows **rules** such that consumption and investment react endogenously to changes in government revenue.

A SOE-RBC-SAM model with government (cont.)

- Main decision margins of households:
 - Labor participation (labor-leisure choice).
 - Formal employment with:
 - Search and matching frictions → Equilibrium unemployment.
 - Wage rigidity.
 - o **Regulatory burden:** payroll taxes and firing costs.
 - **Informal** (self-)employment w/o frictions, rigidities and burdens of formal, but less productive.
- Shocks on aggregate productivity, foreign interest rate, government spending, and oil income.
- Limitations: representative agent, exogenous separation, no minimum wage.
- Estimated for the Colombian economy using GMM.

GMM Estimation


Matched data moments vs. Model moments

Moment	Data	Model
E[u_obs]	0.0711408	0.0720515
E[ls_obs]	0.3481620	0.3481390
E[lf_obs]	0.2442642	0.2438040
E[wfp_obs]	0.8862849	0.5709476
E[Estrechez_v_u]	0.3194186	0.3193847
E[diff_inv_obs*diff_inv_obs]	0.0028715	0.0006399
E[diff_v*diff_v]	0.0053584	0.0014154
<pre>E[diff_v*diff_v(-1)]</pre>	-0.0000007	-0.0006073
E[diff_lnw*diff_lnw]	0.0002950	0.0000005
E[diff_lnw*diff_lnw(-5)]	0.0000391	0.0000003
E[diff_y_obs*diff_lnw]	0.0000298	0.0000011
E[diff_lf_obs*diff_lnw]	-0.0000008	-0.0000004
E[diff_ii*diff_ii]	0.7553449	0.7479726
E[diff_r*diff_r]	0.0001746	0.0000058
E[diff_c_obs*diff_c_obs]	0.0000564	0.0000262
E[diff_y_obs*diff_y_obs]	0.0000694	0.0000679
E[diff_ii*diff_ii(-1)]	-0.1027612	-0.0700836
E[diff_c_obs*diff_c_obs(-1)]	-0.0000041	0.0000068
<pre>E[diff_y_obs*diff_y_obs(-1)]</pre>	0.0000062	0.0000022
E[diff_c_obs*diff_y_obs]	0.0000329	0.0000402
E[diff_y_obs*diff_u_obs]	-0.0000221	-0.0000463
E[diff_c_obs*diff_u_obs]	-0.0000440	-0.0000187
E[diff_u_obs*diff_u_obs]	0.0009967	0.0010681

Results from estimation

parameters			
t-stat			
75.6552			
137.2618			
377.7307			
566.8441			
8.6409			
10.6753			
36.9637			
14.0726			
9.4266			
cs .			
t-stat			
33.7689			
23.6572			
MINIMUM CHECK			
Port observed by the continional continuous of occord			
Fval obtained by the optimization routine: 0.058097			
Value of J-test statistic: 3.485793			
p-value of J-test statistic: 0.991034			

A ten-percent payroll tax reduction under different assumptions of how fiscal revenues are spent

THANK YOU!